MODULES THAT HAVE A WEAK δ-SUPPLEMENT IN EVERY COFINITE EXTENSION

ESRA OZTÜRK SOZEN1, SENOL EREN2

Abstract. In this paper, we study on modules that have a weak (ample) δ-supplement in every extension which are adapted Zöschinger’s modules with the properties (E) and (EE). It is shown that: (1) Direct summands of modules with the property δ-(CWE) have the property δ-(CWE); (2) For a module M, if every submodule of M has the property δ-(CWE) then so does M; (3) For a ring R, R is δ-semilocal iff every R-module has the property δ-(CWE); (4) Every factor module of a finitely generated module that has the property δ-(CWE) also has the property δ-(CWE) under a special condition; (5) Let M be a module and L be a submodule of M such that $L \ll_{\delta} M$. If the factor module M/L has the property δ-(CWE), then so does M; (6) On a semisimple module the concepts of modules that have the property δ-(CE) and δ-(CWE) coincide with each other.

Keywords: cofinite extension; δ-supplement; weak δ-supplement; δ-semilocal ring.

2010 Mathematics Subject Classification: 16D10.

1. INTRODUCTION

Throughout this paper, we assume that all rings are associative with identity and all modules are unital left modules. By $X \leq M$, we mean X is a submodule of M or M is an extension of X. A submodule $K \leq M$ is called small in M (denoted by $K \ll M$) if $M \neq K + T$ for every proper submodule T of M. Dually, a submodule $L \leq M$ is called essential in M (denoted by $L \subseteq M$) if $L \cap X \neq 0$ for every nonzero submodule X of M. Let U and V be submodules of M. V is called a supplement of U in M if it is minimal with respect to $M = U + V$, equivalently $M = U + V$ and $U \cap V = 0$ [13]. A submodule S of a module M has ample supplements in M if every submodule T such that $M = S + T$ containing submodule has a supplement in M and it is called amply supplemented if every submodule has ample supplements in M. If $M = U + V$ and $U \cap V \ll M$, then V is called a weak supplement of U in M, and M is a weakly supplemented module if every submodule of M has a weak supplement in M.

Recall that a submodule N of a module M is said to be δ-small in M, written $N \ll_{\delta} M$, provided $M \neq N + X$ for any proper submodule X of M with M/X singular [14]. Let L be a submodule of a module M. A submodule K of M is called a δ-supplement of L in M provided $M = L + K$ and $M \neq L + X$ for any proper submodule X of K with K/X singular, equivalently, $M = L + K$ and $L \cap K \ll_{\delta} K$. The module M is called δ-supplemented if every submodule of M has a δ-supplement in M [4]. On the other hand the submodule N is said to have ample δ-supplement in M if every submodule L of M with $M = N + L$ contains a

1 Ondokuz Mayis University, Faculty of Sciences and Arts, Department of Mathematics, Samsun, Turkey. E-mail: esraozturk55@hotmail.com; seren@omu.edu.tr.
\(\delta\)-supplement of \(N\) in \(M\). The module \(M\) is called *amply \(\delta\)-supplemented* if every submodule of \(M\) has ample \(\delta\)-supplements in \(M\) [11]. Let \(P\) be the class of all singular simple modules and \(M\) be a module. Then \(\delta(M) = \cap \{N \leq M \mid M/N \in P\} = \sum \{N \leq M \mid N \ll \delta M\} \).

Zöschinger generalized injective modules to modules with the property \((E)\). He said that a module \(M\) has the property \((E)\) if \(M\) has a supplement in every extension. He also said that a module \(M\) has the property \((EE)\) if \(M\) has ample supplements in every extension [15]. In [4], a submodule \(M\) of a module \(N\) is called cofinite if the factor module \(N/M\) is finitely generated. Adapting Zöschinger’s module with the properties \((E)\) and \((EE)\), Çalışıcı and Türkmen say that a module \(M\) has the property \((CE)\) \(((CEE)\)) if \(M\) has a supplement (ample supplements) in every cofinite extension. Following this, in [9] the authors introduced modules with the properties \((CWE)\) and \((CWEE)\).

Generalizing Zöschinger’s module with the properties \((E)\) and \((EE)\) in [7] the authors introduced the concepts of modules with the properties \(\delta-(CE)\) and \(\delta-(CEE)\) and investigate basic properties of them. In conclusion, we show that if every submodule of a module \(M\) has the property \(\delta-(CWE)\), then \(M\) has the property \(\delta-(CWEE)\). Moreover, if \(M\) has the property \(\delta-(CWE)\), then every direct summand of \(M\) has the property \(\delta-(CWE)\). We prove that over a left hereditary ring every factor module of a finitely generated module that has the property \(\delta-(CWE)\) also has the property \(\delta-(CWE)\). In addition, we give a characterization for \(\delta\)-semilocal rings by using the property \(\delta-(CWE)\) and over a \(\delta-V\)-ring the concepts of modules with the properties \(\delta-(CWE)\) and \(\delta-(CE)\) coincide.

2. MAIN RESULTS

Definition: Let \(M\) be a module. We say that \(M\) has the property \(\delta-(CE)\) if \(M\) has a \(\delta\)-supplement in every cofinite extension.

Definition: Let \(M\) be a module. We say that \(M\) has the property \(\delta-(CWE)\) if \(M\) has a weak \(\delta\)-supplement in every cofinite extension and \(M\) has the property \(\delta-(CWEE)\) if \(M\) has weak ample \(\delta\)-supplement in every cofinite extension.

Proposition: Every simple module has the property \(\delta-(CWE)\).

Proof: Let \(S\) be a simple module and \(N\) be any cofinite extension of \(S\). Then \(S\) is either a direct summand of \(N\) or \(\delta\)-small in \(M\). In the first case \(S \oplus S' = N\) for a submodule \(S' \leq N\) and so \(S'\) is a weak \(\delta\)-supplement of \(S\) in \(N\). In the second case, \(N\) is a weak \(\delta\)-supplement of \(S\) in \(N\). So in each case \(S\) has a weak \(\delta\)-supplement in \(N\). Finally \(S\) has the property \(\delta-(CWE)\).

It is easy to see that every module with the property \((CWE)\) and \(\delta-(CE)\) has the property \(\delta-(CWE)\). Let consider the \(\mathbb{Z}\)-module \(\mathbb{Z}\) and \(\mathbb{Z}\)-module \(Q\). Each of them is an example of a module that has the property \(\mathbb{Z}\)-module. It is natural to pose the question whether there exists similar result fort he properties of \(\delta-(CE)\) and \(\delta-(CE)\). To answer this, at the end of this section we shall give an example of a module which has the property \(\delta-(CWE)\) but not \(\delta-(CE)\).

Zöschinger proved in [15] that a module has the property \((EE)\) if and only if every submodule has the property \((E)\). Now we adopt only one side of this fact for our modules.
Theorem: Let M be a module. If every submodule of M has the property δ-(CWE), then M has the property δ-(CWE).

Proof: Suppose that every submodule of M has the property δ-(CWE). For a cofinite extension N of M, let $N = M + K$ for some submodule K of N. Then $N/M \cong K/(M \cap K)$ is finitely generated and so $M \cap K$ is a cofinite submodule of K. By the hypothesis, there exists a submodule V of K such that $K = (M \cap K) + V$ and $(M \cap K) \cap V = M \cap V \ll \delta K$. Note that $N = M + V$. It follows that V is a weak δ-supplement of M in N. So M has the property δ-(CWE).

In the following proposition we show that the property δ-(CWE) is preserved by direct summands.

Proposition: Every direct summand of a module with the property δ-(CWE) has the property δ-(CWE).

Proof: Let N be a direct summand of M. Then there exists a submodule K of M such that $M = N \oplus K$. Let L be a cofinite extension of N, T be the external direct sum $L \oplus K$ and $\gamma: M \to T$ be the canonical embedding. Then $M \cong \gamma(M)$ has the property δ-(CWE). We have $L/N \cong (L \oplus K)/\gamma(M)$ is finitely generated. Since $\gamma(M)$ has the property δ-(CWE), then there exists a submodule U of T such that $T = \gamma(M) + U$ and $\gamma(M) \cap U \ll \delta T$. Consider the projection $\pi: T \to L$. By this way, we have $N + \pi(U) = L$. Also $(\pi) \leq \gamma(M)$, $\pi(\gamma(M) \cap U) \leq \pi(\gamma(M)) \cap \pi(U) = N \cap \pi(U) \ll \delta \pi(T) = L$. Therefore $\pi(U)$ is a weak δ-supplement of N in L.

Now by using the property δ-(CWE) we give a characterization for δ-semilocal rings which is related to cofinitely weak δ-supplemented modules investigated in [3, 8].

Theorem: Let R be a ring. Then the following statements are equivalent:

a) R is a δ-semilocal ring.

b) Every R-module has the property δ-(CWE).

Proof: Let R be a δ-semilocal ring, M be an R-module and N be a cofinite extension of M. Since R is δ-semilocal, N is a cofinitely weak δ-supplemented module from [3]. Therefore M has a weak δ-supplement in N as a submodule of M. Conversely, let M be an R-module and U be any cofinite submodule of M. By hypothesis, U has the property δ-(CWE). Then U has a weak δ-supplement in M, so that M is cofinitely weak δ-supplemented. Hence R is δ-semilocal by [3].

Corollary: Let R be a ring. Then every R-module is cofinitely weak δ-supplemented if and only if every R-module has the property δ-(CWE).

Let M be a module and U be a submodule of M. If the factor module M/U has the property δ-(CWE) M does not need to have the property δ-(CWE). For example, for the ring $R = \mathbb{Z}$, the R-module $M = 2\mathbb{Z}/4\mathbb{Z}$ has a weak δ-supplement in every cofinite extension since it is simple. But $2\mathbb{Z}$ does not have a weak δ-supplement in its cofinite extension \mathbb{Z}.

Now we show that the statement mentioned above is true under a special condition.

Proposition: Let M be a module and U be a submodule of M. If $U \ll \delta M$ and the factor module M/U has the property δ-(CWE), then M has the property δ-(CWE).

Proof: Let N be any extension of M. Since M/U has the property δ-(CWE), there exists a submodule V/U of N/U such that $M/U + V/U = N/U$ and $(M \cap V)/U \ll \delta N/U$. Note that
Suppose that \((M \cap V) + S = N\) for a submodule \(S\) of \(N\) with \(N/S\) singular. Then we obtain \((M \cap V)/U + (S + U)/U = N/U\). Since \((M \cap V)/U \ll_{\delta} N/U\) and \(N/(S + U) \cong (N/S)/(S + U)/S\) is singular, we have that \((S + U)/U = N/U\). It follows that \(N = S + U = S\) and so \(M \cap V \ll_{\delta} N\) is obtained.

Corollary: Every \(\delta\)-local module has the property \(\delta\)-(CWE).

Corollary: Let \(M\) be a module. If \(M\) has the property \(\delta\)-(CWE), then so does every \(\delta\)-small cover of \(M\).

In [2], Çalışıcı and Türkmen defined cofinitely injective modules, that is, a module \(M\) is called cofinitely injective if every \(M\) is a direct summand of every cofinite extension.

Recall that a ring \(R\) is called left \(\delta\)-\(V\)-ring if \(\delta(M) = 0\) for every left \(R\)-module \(M\) [12].

Proposition: Let \(R\) be a left \(\delta\)-\(V\)-ring. An \(R\)-module \(M\) has the property \(\delta\)-(CWE) if and only if \(M\) is cofinitely injective.

Proof: Let \(M\) has the property \(\delta\)-(CWE) and \(N\) be any extension of \(M\). Then \(M\) has a weak \(\delta\)-supplement \(V\) in \(N\). We have \(M + V = N\) and \(M \cap V \ll_{\delta} N\). Hence \(M \cap V \leq \delta(N) = 0\) and so \(N = M \oplus V\). Conversely, let \(M\) be injective and \(N\) be any extension of \(M\). Then there exists a submodule \(K\) of \(N\) such that \(N = M \oplus K\). Hence \(K\) is a weak \(\delta\)-supplement of \(M\) in \(N\).

Corollary: Let \(R\) be a left \(\delta\)-\(V\)-ring. An \(R\)-module \(M\) has the property \(\delta\)-(CWE) if and only if \(M\) has the property \(\delta\)-(CE).

Since every submodule of a \(\delta\)-hollow module is \(\delta\)-small we can give the following proposition fort he completeness.

Proposition: If \(M\) is a \(\delta\)-hollow module, then \(M\) has the property \(\delta\)-(CWE).

Proof: Clear

Recall that over a left hereditary ring every factor module of an injective module is injective. In the following proposition, we show that every factor module of a module that has the property \(\delta\)-(CWE) over a left hereditary ring has the property \(\delta\)-(CWE).

Proposition: Let \(R\) be a left hereditary ring and \(M\) be a finitely generated module. If \(M\) has the property \(\delta\)-(CWE), then so does every factor module of \(M\).

Proof: For any submodule \(U\) of \(M\), let \(N\) be a cofinite extension of \(M/U\). Then \(N\) is finitely generated. By \(E(M)\), we denote the injective hull of \(M\). Since \(R\) is left hereditary, \(E(M)/U\) is injective, and so there exists a commutative diagram with exact rows in the following:

\[
\begin{array}{ccccccccc}
0 & \rightarrow & U & \rightarrow & M & \rightarrow & M/U & \rightarrow & 0 \\
 & \downarrow{id} & \downarrow{f} & \downarrow{\varphi} & \downarrow{\sigma} & \downarrow{i_2} & & & \\
0 & \rightarrow & U & \rightarrow & K & \rightarrow & N & \rightarrow & 0 \\
\end{array}
\]
i.e., $\varphi = i_2 \pi$, where $\varphi : M \to K$ is a monomorphism. It follows that $K/\varphi(M) \cong K/\mathcal{C}(\alpha) \cong N$. Since M has the property $\delta(CWE)$, $\varphi(M)$ has a weak δ-supplement V in K. So we obtain that $\sigma(V)$ is a weak δ-supplement of M/U in N. Hence M/U has the property $\delta(CWE)$.

It is easy to see that every module that has the property $\delta(CWE)$ also has the property $\delta(CE)$. Now we give the following example to show that the converse statement may not be true in general.

Example (see in [1]): For primes p and q, consider the ring $R := \mathbb{Z}_{pq} := \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0, (p, b) = (q, b) = 1 \right\}$. R is a δ-semilocal ring that is not δ-semiperfect. Then there exists an R-module M that does not have the property $\delta(CE)$. But since R is a δ-semilocal ring, M has the property $\delta(CWE)$.

In the following theorem we see a kind of a module that coincide the concepts of properties $\delta(CE)$ and $\delta(CWE)$ over it.

Theorem: Let M be a semisimple module. Then the following statements are equivalent:

a) M has the property $\delta(CE)$.

b) M has a δ-supplement in every cofinite extension N that is a direct summand of N.

c) M has the property $\delta(CWE)$.

Proof: ($a \implies b$): Let N be any cofinite extension of M. By (a), we have $N = M + K$ and $M \cap K \ll_{\delta} K$ for some submodule $K \subseteq N$. Since M is a semisimple module, then there exists a submodule X of M such that $M = (M \cap K) \oplus X$. So $(M \cap K) \cap X = K \cap X = 0$. Therefore $N = M + K = [(M \cap K) \oplus X] = K \oplus X$. This means K is a δ-supplement of M that is a direct summand in N.

($b \implies c$): Clear.

($c \implies a$): Let N be any cofinite extension of M. By (c), there exists a submodule K of N provided $N = M + K$ and $M \cap K \ll_{\delta} N$. Since $M \cap K \subseteq M$ and M is semisimple there exists a submodule T of M such that $(M \cap K) \oplus T = M$.

So, $N = M + K = (M \cap K) \oplus T + K = K \oplus T$ is obtained. Since K is a direct sum of N and $M \cap K \ll_{\delta} N$, it is obtained that $M \cap K \ll_{\delta} K$.

REFERENCES

