THE DECOMPOSITION OF SOME ANNIHILATOR POLYNOMIALS FOR LINEAR MAPS IN COPRIME POLYNOMIALS

VASILE POP

Abstract. The decomposition of annihilator polynomials for linear maps or for the matrices of product of two coprime polynomials gives a decomposition of the spectrum as a direct sum of two subspaces with annihilator polynomials of smaller degree.

Keywords: Linear Map, Range and Null space, Rank, Idempotent and Involuntary matrices.

1. INTRODUCTION

Let V be a vector space over a field K and let $T : V \to V$ be a linear map for which there is an annihilator polynomial $P \in K[X]$, i.e. $P(T) = 0$. If the annihilator polynomial P is irreductible then there are two coprime, non-constant polynomials such that $P = P_1 \cdot P_2$. We give some relations in which the null spaces $\ker(P_1(T))$, $\ker(P_2(T))$ and the numbers $\text{rank}(P_1(T))$, $\text{rank}(P_2(T))$ appear.

2. COMPLEMENTARY SUBSPACES $\ker(P_1(T)) \text{ AND } \ker(P_2(T))$

Theorem 2.1 If V is a vector space over the field K with $T : V \to V$ an endomorphism and $P_1, P_2 \in K[X]$ two coprime polynomials then the following statements are equivalent:

a) $P_1(T) \cdot P_2(T) = 0$ or $(P_1 \cdot P_2)(T) = 0$

b) $V = \ker(P_1(T)) \oplus \ker(P_2(T))$.

Proof: Since the polynomials are coprime there are two polynomials $Q_1, Q_2 \in K[X]$ so that

$$P_1Q_1 + P_2Q_2 = 1$$

(1)

a) \to b): In the hypothesis $P_1(T) \cdot P_2(T) = 0$. We show that any vector $x \in V$ can be decomposed uniquely as $x = x_1 + x_2$ with $x_1 \in \ker(P_1(T))$ and $x_2 \in \ker(P_2(T))$. Since $(P \cdot Q)(T) = P(T) \cdot Q(T) = Q(T) \cdot P(T)$, from (1) we obtain $P_1(T) \cdot Q_1(T) + P_2(T) \cdot Q_2(T) = I$, where $I : V \to V$ is the identity map $I(x) = x, x \in V$. We select $x_1 = P_2(T) \cdot Q_2(T)(x)$ and x_2 as the unique such that $x_1 + x_2 = x$.

1 Technical University of Cluj-Napoca, Department of Mathematics, Postal Code, Cluj-Napoca, Romania.
E-mail: Vasile.Pop@math.utcluj.ro.
The decomposition of some …

\[x_2 = P_1(T) \circ Q_1(T)(x) \]
and we have
\[P_1(T)(x_2) = (P_1(T) \circ P_2(T))(Q_2(T)(x)) = 0, \]
hence \(x_1 \in \ker(P_1(T)) \) and \(P_2(T)(x_2) = (P_1(T) \circ P_2(T))(Q_1(T)(x)) = 0 \) so that \(x_2 \in \ker(P_2(T)) \).

Moreover, if
\[y \in \ker(P_1(T)) \cap \ker(P_2(T)) \]
then
\[P_1(T)(y) = 0, \ P_2(T)(y) = 0 \]
and
\[y = (P_1 \circ P_2)(T)(y) = Q_1(T)(P_1(T)(y)) + Q_2(T)(P_2(T)(y)) = 0 \]
hence
\[\ker(P_1(T)) \cap \ker(P_2(T)) = \{0\} \]
and then \(V = \ker(P_1(T)) \oplus \ker(P_2(T)) \).

b) → a): Any vector \(x \in V \) can be written uniquely as \(x = x_1 + x_2 \) with \(x_1 \in \ker(P_1(T)) \), \(x_2 \in \ker(P_2(T)) \). We have,
\[
P_1(T) \circ P_2(T)(x) = P_1(T)(P_2(T)(x_1)) + P_1(T)(P_2(T)(x_2)) = \\
= P_2(T)(P_1(T)(x_1)) + P_1(T)(P_2(T)(x_2)) = P_2(T)(0) + P_1(T)(0) = 0
\]
hence \(P_1(T) \circ P_2(T) = 0 \).

Corollary 2.1 The linear map \(T : V \to V \) is a linear projection on vector space \(V \) if and only if \(V = \ker(T) \oplus \ker(I - T) \).

Proof: The map \(T \) is a linear projection if and only if the polynomial \(P(x) = x - x^2 \) is the annihilator polynomial for \(T \). We consider the polynomials \(P_1(x) = x, \ P_2(x) = 1 - x \) which are coprime and \(P(x) = P_1(x) \cdot P_2(x) \).

We have \(P(T) = 0 \iff (P \circ P_2)(T) = 0 \iff P_1(T) \circ P_2(T) = 0 \) and by Theorem 2.1 this is equivalent to \(V = \ker(P_1(T)) \oplus \ker(P_2(T)) = \ker(T) \oplus \ker(I - T) \).

Corollary 2.2 If \(V \) is a vector space over the field \(K \) of characteristic different than 2 then the linear map \(S : V \to V \) is a symmetry if and only if \(V = \ker(I - S) \oplus \ker(I + S) \).

Proof: The map \(S \) is a symmetry if and only if the polynomial \(P(x) = 1 - x^2 \) is the annihilator polynomial of \(S \ (P(S) = 0) \). We consider the polynomials \(P_1(x) = 1 - x \) and \(P_2(x) = 1 + x \), which in the ring \(K[X] \) are coprime if the characteristic of the field \(K \) is different than 2. We have \(P(x) = P_1(x)P_2(x) \) so that \(0 = P(S) = P_1(S) \circ P_2(S) \) and by Theorem 2.1 this is equivalent with \(V = \ker(P_1(S)) \oplus \ker(P_2(S)) = \ker(I - S) \oplus \ker(I + S) \).
3. **THE SUM OF THE RANKS** \(\text{rank}(P_1(T)) + \text{rank}(P_2(T)) \)

Theorem 3.1 Let \(V \) be a vector space of finite dimension over the field \(K \), \(T : V \to V \) an endomorphism and \(P_1, P_2 \in K[X] \) two coprime polynomials. The following statements are equivalent:

a) \(P_1(T) \circ P_2(T) = 0 \)

b) \(\text{rank}(P_1(T)) + \text{rank}(P_2(T)) = \dim(V) \).

Proof: a) \(\to \) b): By Theorem 2.1 it follows:

\[
V = \ker(P_1(T)) \oplus \ker(P_2(T)) = \dim(V) - \text{rank}(P_1(T)) + \dim(V) - \text{rank}(P_2(T)),
\]

which implies that \(\text{rank}(P_1(T)) + \text{rank}(P_2(T)) = \dim(V) \).

b) \(\to \) a): From the rank-nullity theorem (see [1]) it follows that

\[
\dim(V) = \dim(\ker(P_1(T))) + \dim(\ker(P_2(T))).
\]

On the other hand, \(\ker(P_1(T)) \cap \ker(P_2(T)) = \{0\} \); since \(P_1(T)(y) = P_2(T)(y) = 0 \) it follows that \(y = (Q, P_1(T))(y) + (Q, P_2(T))(y) = 0 \) hence \(V = \ker(P_1(T)) \oplus \ker(P_2(T)) \) and by Theorem 2.1 we have that \(P_1(T) \circ P_2(T) = 0 \).

Corollary 3.2 [6] The linear map \(T : V \to V \) is a projection of the vector space \(V \) if and only if \(\text{rank}(T) + \text{rank}(I - T) = \dim(V) \).

Corollary 3.2 [5] If the field \(K \) has the characteristic different than 2 then the linear map \(S : V \to V \) is a symmetry if and only if \(\text{rank}(I - S) + \text{rank}(I + S) = \dim(V) \).

4. **THE DECOMPOSITION OF ANNIHILATORS POLYNOMIALS FOR MATRICES**

Theorem 4.1 If \(A \in M_n(K) \) is a matrix and \(P_1, P_2 \in K[X] \) are two coprime polynomials the following statements are equivalent:

a) \(P_1(A) \cdot P_2(A) = 0 \)

b) \(\text{rank}(P_1(A)) + \text{rank}(P_2(A)) = n \).

Proof: We consider the linear map \(T : K^n \to K^n \), \(T(X) = AX \), where

\[
X = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \in K^n
\]

and we have \(P_1(T)(X) = P_1(A)X \), \(P_2(T)(X) = P_2(A)X \), \(\text{rank}(P_1(T)) = \text{rank}(P_1(A)) \), \(\text{rank}(P_2(T)) = \text{rank}(P_2(A)) \) and then Theorem 4.1 is a consequence of Theorem 3.1.
Corollary 4.1 [2, 5] The matrix \(A \in \mathbb{M}_n(K) \) is an idempotent matrix \((A^2 = A) \) if and only if
\[\text{rank}(A) + \text{rank}(I_n - A) = n. \]

Corollary 4.2 [2, 4] If the field \(K \) has \(\text{char}(K) \neq 2 \) then the matrix \(A \in \mathbb{M}_n(K) \) is an
involutory matrix \((A^2 = I_n) \) if and only if
\[\text{rank}(I_n - A) + \text{rank}(I_n + A) = n. \]

We mention that a recent book which contains a novel presentation of idempotent and
involutory matrices of order two as well as properties and applications of symmetries and
projections is [3].

REFERENCES

[3] Pop, V., Furdui, O., Square Matrices of Order Two. Theory Applications and Problems,
Springer, Cham, 2017.
2006.